A Look at the GM 6L80; Part 1

Introduction
The first of ten new 6-speed automatics, the 6L80 was introduced for the 2006 model year (Figure 1). The 6L80 (RPO MYC) is currently available in the Corvette; Cadillac XLR-V; Cadillac STS-V; Chevrolet, Cadillac and GMC C/K trucks; and the Hummer H2 platforms.

Features
- Input torque capacity: 430 lb-ft (583 Nm)
- Output torque capacity: 664 lb-ft (900 Nm)
- Ratios:
 1st — 4.02:1
 2nd — 2.36:1
 3rd — 1.53:1
 4th — 1.15:1
 5th — 0.85:1
 6th — 0.67:1
- Maximum shift speed: 6500 RPM
- Maximum GVW: 8600 lbs
- Maximum GCVW: 14000 lbs
- PRNDL positions: P, R, N, D, (S or M)
- 2 shift solenoids (On/Off design): SS1, SS2
- 6 PWM pressure control solenoids: PCS1, PCS2, PCS3, PCS4, PCS5, TCC
- EC3 Converter 300mm (Corvette)
- Fluid required: Dexron VI
- Clutch-to-clutch shifts; 5 clutches, 1 sprag
- Planetary assemblies: Input — Simpson; Output — Dual Pinion
Today's complex electronic transmissions require precise and accurate control, like the control provided by BorgWarner quality transmission solenoids. Our solenoids are engineered to exacting specifications, improving fuel economy and reducing emissions.

Make BorgWarner your one-stop source for automatic transmission controls that are competitively priced, readily available and guaranteed to fit your rebuilds. Call your authorized distributor today and ask for the original parts from the leader in automatic transmission technology...BorgWarner Inc.
A Look at the GM 6L80; Part 1

- Vane-style oil pump
- Internally-mounted input and output shaft, and Hall Effect speed sensors
- Internal Mode Switch (IMS)
- Performance Algorithm Shifting (PAS) programming
- Performance Algorithm Lift foot (PAL) programming
- Sport mode and TAP shift
- Adaptive strategies with fast learn capabilities
- Up to 75 transmission-only DTCs

Checking Fluid Level

The 6L80 transmission requires an unusual process for checking its fluid level. Many 6L80 applications don’t have a dipstick; there’s a plug in the dipstick hole. The plug can be removed and the hole used as a fill point for transmission fluid (Figure 2). Here’s how to check the fluid level:

Bring the transmission fluid temperature between 86º–122ºF (30º–50ºC). You can verify this using a scan tool, the driver information center, or the transmission gauge.

If the transmission has a dipstick, use that to check the fluid level; on applications without a dipstick:
- Park the vehicle on level ground.
- Start the engine and let it idle.
- Shift the transmission through each range, pausing in each range for about 3 seconds to give the clutches a chance to fill.
- Place the transmission in park.
- Remove the level control plug located in the transmission oil pan. The fluid should drip out the level control hole. If so, the fluid level is okay.
 * If fluid doesn’t drip from the level control hole, add Dexron VI until fluid starts to drip from the hole.
 * If fluid runs from the hole, wait until the fluid stops running out to lower the fluid to the proper level.

The level is correct when fluid drips from the hole. If a steady stream is present or no flow is present the
Parker Transmission Kits

Parker specializes in offering the most technologically advanced transmission kits to serve the automotive aftermarket. We offer solutions for customers seeking top of the line and standard transmission kits.

The Toledo Trans-Kit (TTK) brand includes premium components and aftermarket fixes, while the Bryco brand of kits includes basic standard components. Both of our kits include enhanced sub kit packaging with part photography to save time and facilitate easy installation.

Parker has been manufacturing quality sealing products for over 60 years, and Parker’s rubber seals are a key component in all our transmission kits.

<table>
<thead>
<tr>
<th>KIT COMPONENTS</th>
<th>TOLEDO TRANS-KIT PREMIUM BRAND</th>
<th>BRYCO VALUE LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo Enhanced Sub-Kit Packaging</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Metal Clad Seals</td>
<td>Premium Brands</td>
<td>Non-Premium Brands</td>
</tr>
<tr>
<td>Pan Gasket</td>
<td>Premium Cork and Rubber, Fiber, Molded Rubber</td>
<td>Non-premium Cork and Rubber, Fiber, Molded Rubber</td>
</tr>
<tr>
<td>Paper Gasket</td>
<td>Various U.S. Manufacturers</td>
<td>Various U.S. Manufacturers</td>
</tr>
<tr>
<td>Metal Sealing Rings</td>
<td>Premium Brands, including GoldStripe®</td>
<td>Non-premium Brands</td>
</tr>
<tr>
<td>Rubber Components</td>
<td>Parker</td>
<td>Parker</td>
</tr>
<tr>
<td>Aftermarket Fixes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Friction Plates</td>
<td>Raybestos®</td>
<td>Allomatic®</td>
</tr>
</tbody>
</table>

To learn more about the TTK and Bryco Transmission Kits, and to obtain a complete listing of components, please contact us today at 800-582-2760.

GoldStripe is a registered trademark of SPX Filtran, Raybestos and Allomatic are registered trademarks of Raybestos Powertrain Corporation.
A Look at the GM 6L80; Part 1

The fluid level is incorrect. Readjust the fluid level, and reinstall the fill plug and the level control plug.

You can add fluid through the dipstick hole or through the level control hole.

What’s Inside?

NSBU/PRNDL/IMS Switch (Figure 3)—The internal mode switch (IMS) is mounted to the valve body and is connected mechanically to the manual valve. Electrically the internal mode switch operates much like other GM applications:

The TCM sends an 8.3–9.3 volt bias to the internal mode switch on 4 circuits: A, B, C and P. Pin N, which is used for neutral starting operations, is fed system voltage from the ECM. As you move the range selector, the internal mode switch will ground or open the circuits or circuit required to indicate the specific manual valve position. The TCM identifies the range by the voltage sequence from the switch (Figure 4).

Low = Grounded (0 Volts)
High = Open (Source Voltage)

Note: Not all applications will include all the ranges shown in the chart.

Input and Output Speed Sensors

— The speed sensors are Hall Effect assemblies and are mounted to the control valve assembly (valve body). The TCM provides a signal voltage of 8.3–9.3 volts for the sensor operation. As the clutch housings rotate, the sensors produce a square wave signal that varies frequency with the speed of the clutch housing (Figure 5). The TCM will monitor the frequency of the signal to determine the input or output speed (Figure 6 & 7).

Control Solenoid Body and TCM Assembly (TEHCM)

— The control solenoid valve assembly consists of these components:

- 2 shift solenoids (On/Off design): SS1, SS2; 16-20 ohms at 70°F (21°C)
- 6 controlled pressure control solenoids; PCS, PCS2, PCS3, PCS4, PCS5 and TCC; 3.0-5.5 ohms at 70°F (21°C), 0.9-amp current limit, solenoid operational voltage from TCM 8.3–9.3 volts, cleaning pulse every 30 seconds during P/N.
- 32-bit TCM (TEHCM); mounted inside the transmission on the valve body. Thermal protected 290°F (144°C), default 3rd or 5th.
- 4 pressure switches that monitor valve and clutch hydraulic operation and clutch volume index (CVI — adaptive lean).
- A transmission fluid temperature sensor (TFT) NTC thermistor.
- 2 TCM internal temperature sensors.

<table>
<thead>
<tr>
<th>TFP Switch</th>
<th>Clutch/circuit Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-5 clutch</td>
</tr>
<tr>
<td>3</td>
<td>2-6 clutch</td>
</tr>
<tr>
<td>4</td>
<td>1-2-3-4 clutch</td>
</tr>
<tr>
<td>5</td>
<td>4-5-6 and L/R Clutch</td>
</tr>
</tbody>
</table>

Figure 8

Figure 7
SuperFlow TransDyno SF-66K

New modular transmission dynamometer.

Offers the convenience, reliability, versatility and ability to test virtually every transmission on the road, including the new Allison models. Handles hydraulically and electrically shifted transmissions, foreign and domestic, in FWD, RWD and AWD configurations. Monitors and tests virtually every aspect of transmission performance, under simulated road load conditions, before the transmission is installed… supported by the accuracy and superior documentation of the exclusive TDAC (Transmission Data Acquisition & Control) System.

AXILINE Unit Testers

AXILINE Electronic Shifter
This stand-alone or add-on unit shifts electronic transmissions can control up to 16 solenoids at a time, including models incorporating latest multiple pulse-width modulated systems.

AXILINE Valve Body Testers
Test valve bodies, solenoids and pressure transducers with actual transmission pressures and heated oil under toughest simulated driving conditions.

AXILINE Solenoid Testers
A must for testing the weakest link, six at a time. Easy to use.

TCRS Torque Converter Testing and Rebuilding Systems

Excellent profit center for transmission repair shops or stand-alone startups… and smartest way to save time and prevent costly comebacks.

TCRS Single Gun
Auto Weld Aligner
Standard of the industry. Patented auto-tack and auto-veld. Do “bowl buildups” and weld on impeller hubs. TAC 12+ control panel lets you automatically control number of tacs and duration.

New! Improved! TCRS Torque Converter Balancer now with automatic weight indexing, runout compensation mode, push bottom polishing and better accuracy and repeatability than ever before.

TCRS Torque Converter Balancer
Test converters BEFORE you ship or install with TCRS HUB RUNOUT INSPECTION UNITS. Ensure your converter quality (after welding) with TCRS AIR TEST STANDS for diagnosing leaks.

SuperShifter
The NEW Durable In-Car Tester
Rugged design, solid state electronics, impact-resistant housing. Tests most late model transmissions. Controls the transmission from inside the car. Tests Solenoid current/resistance. Operator ID and Date/Time stamp. External device connectivity.
A Look at the GM 6L80; Part 1

Pressure Switches — The pressure switches are housed as part of the control solenoid valve assembly. 4 switches are used: 1, 3, 4 and 5. The switches provide an input to the TCM and have two basic functions:

- To monitor clutch regulator valve and clutch hydraulic operation (Figure 8).
- To monitor clutch volume index (CVI — adaptive learning).

Solenoid Operation

IMPORTANT: In systems using the Bosch solenoid system, ON/OFF refers to the solenoids’ hydraulic commanded position, not their electrical command as with other applications; more on this later.

Shift solenoid and PCS operation is controlled by the TEHCM (TCM). The TCM regulates the feed voltage to the solenoids between 8.3–9.3 volts (Figure 9). The TCM then regulates the current flow through the solenoids. The shift solenoids are On/Off design with the TCM controlling the power and ground for the solenoids (Figure 10). The pressure control solenoids are high-side, PWM controlled. The TCM is overcurrent and overtemperature protected (Figure 11, 12, &13).

Bosch refers to the solenoids by their hydraulic operation: Normally High (NH) or Normally Low (NL). Normally High means the solenoid allows pressure to travel to the clutch when the solenoid is off. Normally Low means the solenoid prevents pressure from getting to a clutch when the solenoid is off.

IMPORTANT: This concept of Normally High and Normally Low to describe solenoid operation is far more involved — and confusing — than it might initially appear. We’ll discuss the operation of the Bosch solenoids in detail in an upcoming issue of GEARS.

The solenoids are protected by the filter plate. The filter plate is housed between the valve body and the control solenoid valve assembly (TEHCM) and must be replaced any time the valve body or control solenoid valve assembly (TEHCM) is replaced, or are unbolted from each other.

Clutches

The 6L80 transmission (Figure 14) uses three rotating clutches and two stationary clutches.

1-2-3-4/Forward Clutch — This clutch is applied in 1st through 4th gears. The 1-2-3-4/forward clutch is located in the bottom of the reverse clutch housing. When applied, it locks the reverse drum to the 2-6 and 3-5-reverse shell to drive the lower sun gear for the output carrier.

2-6 Clutch — This is one of the stationary clutches. It’s located on top of the center support assembly. It prevents the 2-6 and 3-5-reverse shell from rotating.

3-5-Reverse Clutch — This clutch is used in 3rd, 5th and reverse. It’s located in the reverse clutch housing. When applied, it connects the reverse drum to the 2-6 and 3-5-reverse shell. The clutch then drives the front output sun gear in the output carrier.

4-5-6/Input Clutch — This clutch is located in the input housing. When applied, it locks the input housing to the 4-5-6 drive hub, which drives the lower output carrier.

Low/Reverse Clutch — This station-
DACCO offers these related products:

- Heavy Duty Torque Converters
- Racing Converters and Components
- Performance Plus Stall Converters
- Custom R & R capabilities
- New, Used, and Remanufactured Hard Parts
- Full Soft Parts coverage

For over forty years DACCO has served the transmission industry as America’s largest remanufacturer of Torque Converters. Our goal is to provide superior products and services to every DACCO customer. The DACCO route sales force supports 150+ DACCO distributors nationwide, while the company’s 50+ DACCO Transmission Parts Distribution Centers provide one-stop shopping for transmission repair professionals throughout the United States.
A Look at the GM 6L80; Part 1

Powerflow

First Gear: 1-2-3-4/Forward clutch (rotating clutch) is applied.

Engine torque is applied to the input shaft, which is the driving component for all ranges. When the input shaft rotates, it drives the input ring gear. The clutch drives the pinions of the input carrier, which is splined to the reverse drum.

When the 1-2-3-4/Forward clutch applies, it transfers engine torque through the input shaft to the reverse drum. The torque then transfers to the 1-2-3-4/input shell. The input shell is splined to the lower output sun gear. The sun gear drives the output carrier pinions, rotating the output ring gear at a 4.027:1 gear ratio.

Second Gear: 1-2-3-4/Forward clutch (rotating clutch) and 2-6 (stationary) are applied.

With the 2-6 clutch applied, the 2-6 and 3-5-reverse shell can’t rotate. With the shell locked to the case, the upper output sun gear is held. Engine torque is still being applied through the 1-2-3-4/Forward clutch, which drives the lower sun gear. The combination of the two gearsets provides a 2.364:1 gear ratio.

Third Gear: 1-2-3-4/Forward clutch (rotating clutch) and 3-5-Reverse clutches (rotating clutch) are applied.

With the 3-5-Reverse clutch applied, the reverse drum is locked to the 2-6 and 3-5-Reverse shell. Engine torque is now transferred through both sun shells, driving the output sun gears and output carrier. The pinions rotate, turning the output ring gear at a 1.532:1 ratio.

4th Gear: 1-2-3-4/Forward clutch (rotating clutch) and 4-5-6/Input clutches (rotating clutch) are applied.

With the 4-5-6/Input clutch applied, the hub is driven at engine speed. The 1-2-3-4/Forward clutch is still applied, rotating the lower output sun gear, which rotates the ring gear at a 1.152:1 ratio.

5th Gear: 4-5-6/Input (rotating clutch) and 3-5-Reverse clutches (rotating clutch) are applied.

The 1-2-3-4/Forward clutch releases. The 3-5-Reverse clutch is now applied, driving the upper sun gear in the output gearset. At the same time, engine torque travels through the 4-5-6/Input hub, driving the carrier, which creates an overdrive ratio of 0.852:1.

6th Gear: 4-5-6/Input (rotating clutch) and 2-6 clutches (stationary) are applied.

With only the 4-5-6/input clutch applied, all of the engine torque travels through the output carrier with an overdrive ratio of 0.667:1.

Reverse: 3-5-Reverse (rotating clutch) and Low/Reverse clutches (stationary) are applied.

With the 3-5-Reverse clutch applied, engine torque from the input shaft is sent through the input gear set, through the reverse drum, to the 2-6 and 3-5-Reverse sun shell. The upper sun gear rotates the pinions. The carrier attempts to rotate, but the Low/Reverse clutch is also applied, holding the carrier stationary. This causes the ring gear to rotate backward at a 3.064:1 ratio.

That’s enough for this issue; in the next issue of GEARS, we’ll look at some of the diagnostic processes for these units.
GM PARTS ENGINES

WE’VE THOUGHT OF EVERYTHING.

• 3-YEAR, 100,000-MILE LIMITED WARRANTY •
 (Whichever comes first.)*

• SAME- OR NEXT-DAY DELIVERY** •
 New or remanufactured.

• OE-QUALITY •
 Your GM dealer can give it to you.

• CALL 1.866.453.4123 •
 For dealer locator and technical assistance.

$100 MAIL-IN REBATE†

• When you buy and install any
 GM Engine, Transmission, Transfer Case,
 or select GM Performance Parts Engines.
 • Get up to 10 rebates per quarter per location.
 • For Independent Service Centers (ISC),
 Total Service Support (TSS), and Fleet Accounts.
 • Offer expires December 31, 2008.
 • Go to GMPartsCoop.com to download rebate form.

†Offer open only to Independent Service Centers, ACDelco® TSS accounts, and Fleet accounts
in U.S. Excludes GM dealers and warranty work. Valid only on the installation of GM Engines,
Transmissions, Transfer Cases, or eligible Performance Parts Engines purchased from a GM
dealer or authorized ACDelco Distributor from January 1 through December 31, 2008 (excludes
engines used for circle track or race applications). Rebate requests must be postmarked by

WANT GENUINE ENGINES?

CALL THE GM PARTS
POWERTRAIN CONTACT CENTER
AT 1.866.453.4123 TODAY.

*Warranty applies to engines installed in passenger car and light-duty truck series 10-10. This warranty
does not apply to transfer cases or any unit installed under the General Motors New Vehicle Limited
Warranty and covers only those engines and transmissions that are marketed by GM as Goodwrench,
GM Parts, or GM Performance Parts.

**May be longer for non-PWP dealers.

©2008 GM Corp. All rights reserved.